Analog Devices AD587 10V Reference

Voltage references are a humble piece of hardware, their sole function is to provide a stable, known voltage. This constant, known value of voltage can then be used as a reference for ADCs and DACs as well as provide a precision current source.

I recently got hold of an Analog Devices AD587KN high precision 10.000V reference chip.

AD587KN 10V precision reference

This model of chip has an output value of 10.000V ± 5mV (that is, an output value of 9.995V to 10.005V) straight out of the factory. A voltage drift of 10ppm/°C at 25°C meaning that the output voltage will drift by 10μV for each 1°C the chip is exposed to. Additionally, the chip has a voltage trim input, so if you have access to a precision voltmeter, the chip’s output value can be adjusted even closer to 10.000V.

Continue reading

Matrix MFG-8216A Function Generator Teardown and Repair

Hey folks, sorry for the long wait between drinks, a few things have been going on – holiday, work, demolishing a leaking bathroom.

Anyway, after years of telling myself to get a function generator and watching eBay for quite a few months, I finally took the plunge and bought one. A broken one. Yes, I bought a broken function generator from eBay.

faulty Matrix MFG-8216A function generator
The Matrix MFG-8216A function generator without sine wave output

Continue reading

Keep On Making Ahmed

Sad news from the USA that a fellow Maker, Ahmed, was falsely accused of using his skills for evil. The young inventor had re-purposed a clock and built it into a case with a custom power supply and this was mistaken for a “B-word”.

So, I went looking through some old stuff and quickly found this incriminating photo. The energy-meter hack has everything you need to be accused of making a “B-word”; a digital display, obscure looking device that connects to a computer, electricity and colourful wires.

An innocent energy-meter that has been hacked up or a “B-word”?

Following his arrest, Ahmed did an interview with a local news station. Behind him during the interview was his room of electronics, I’ve got one of those too.

Room with electronics. Anyone want to help me clean-up?

Keep on Making Ahmed.

Energy Meter Hacking – Reading EOUT Pulses

Following on from a recent teardown of a low cost appliance energy meter, I’ve done a bit more hacking of the device. As you may recall, I identified that one of the pins on the meter’s chip (EOUT) output a train of pulses proportional to the energy consumed. Some tests with a multimeter seemed to confirm this because the average voltage of EOUT changed with the appliance wattage.

I was hesitant to connect my logic analyser to the meter to measure the EOUT pin because of potential differences in voltage levels. To resolve, this I quickly whipped up a small board with a 4N25 opto-isolator to provide some voltage isolation between the internals of the energy meter and my logic analyser.

Again, I will repeat the obligatory warnings prevail. Do not:

  • Attempt or copy any of this if you do not fully understand or appreciate the hazards of mains power
  • Open the meter whilst connected to mains power
  • Perform any measurements whilst the meter’s case is open
  • Connect another mains powered device to measure the chip. The energy meter’s power supply is not isolated from active, neutral or earth.

The circuitry that allows for isolation of voltage levels is based around a 4N25 opto-isolator. An opto-isolator  allows for a signal to be transferred using light, this provides an airgap which provides electrical isolation.

opto_circuit Continue reading

Ridiculously Simple Flex Sensor

New Scientist recently detailed the construction materials for the simplest flex sensor I’ve ever heard of – a graphite pencil and a piece of paper. It is obvious when you think about it, but as New Scientist details in in their article Pencil lines as sensors, 21st March 2015 (No 3013) edition,

“MacGyver would be proud. Drawing a rectangle on a piece of paper with an ordinary pencil can create a sensor.”

Draw me a flex sensor?

Continue reading

Flatbed Scanner CCD Reverse Engineering

Probably about 12 years ago, I recovered the imaging sensor from an A4 flatbed scanner that had become obsolete. (I think its obsolescence was due to it having a parallel port interface and my family’s new computer didn’t have a parallel port) Apart from it not being able to communicate with a new computer, it still worked fine sadly. Fortunately, there were several useful components that I recovered from it including a stepper motor, v-belts and pulleys, CCFL light and the CCD.

Well, after all that time saying that one day I’ll get the CCD to work, the time has come.


Continue reading

Energy Meter Hacking

Following on from the recent teardown of a cheap energy meter, I thought there might be some potential to hack this device. Well the EOUT “pulse output” pin shows some promise. The chip’s datasheet says that the EOUT pin outputs a pulse for each unit of energy the meter measures. Additionally, this function is enabled by default.

Since this is enabled, by default, I made some mods to the case and soldered 3x wires directly to the chip.

Continue reading

TO220 Single and Dual Gauge Packages

A friend of mine recently asked me if I knew that there are two package types for humble TO220 devices. I didn’t understand what he meant. He then asked if I had heard of single gauge and dual gauge TO220 packages. Nope still no idea. Finally, he asked if I had seen TO220 voltage regulators such as a 78L05 device with a thin heatsink?

Yes, I had seen these before, in fact I have a couple. I hadn’t really paid a lot of attention to the first time I had seen one of these components with a thin heatsink. I thought that it was perhaps a counterfeit device. That is not the case (excuse the pun). A thinner heatsink is a type of TO220 package.

Below are two TO220 devices, a 7812 12V regulator manufactured by On Semiconductor and a TIP31 NPN transistor from ST Microelectronics. A quick glance and their shape is instantly recognisable.

TO220 devices
TO220 packages for a 7812 12V regulator and a TIP31 NPN transistor.

Continue reading